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¢  FYI: with 32 topics
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Review

e These methods mainly differ in diversity modeling

— Implicitly: The diversity is implicitly modeled through

document similarities
« MMR
« SMM

— Explicitly: It can be explicitly modeled through the coverage of
query subtopics, and document dependency

« xMMR
- WUME
« xQuAD
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M. Larson and G. Jones, “"Spoken content retrieval: A survey of techniques and technologies,”
Foundations and Trends in Information Retrieval, vol. 5, no. 4-5, pp. 235-422, 2012.

Introduction

« An information need can be defined as the reason for which
the user turns to a search engine

Query: 12 price

Information needs
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« Each query usually consists of only a few words, the
corresponding representation might not be appropriately
estimated

— Several effective formulations to enhance the query
representation by pseudo-relevance feedback process 5



A General Flowchart of PRF

« "Pseudo” means that we assume top-ranked document are
relevant documents
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Research Issues

 The main issues in pseudo-relevance feedback

— How to select relevant documents from the top-retrieved

documents
— How to select expansion terms
o
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The Rocchio Algorithm -1

« Rocchio’s relevance feedback model is a classic query
expansion method and it has been shown to be effective in
boosting information retrieval performance

. Starting from the original query g, the new query moves you
some distance toward the centroid of the relevant
documents and some distance away from the centroid of
the non-relevant documents

Initial
query

X known non-relevant documents
o known relevant documents

Revised
query




The Rocchio Algorithm — 2

« The idea can be fulfilled by using the vector space model with
pseudo relevant and non-relevant documents

1 — 1 .
6’:&.6+ﬁ._. Zd _y.__. z d
|Rq| <djERq ]> |Rq| <djr€Rq J)

- Ry be the set of relevant documents to a given query q
- R, be the set of non-relevant documents to query q

— Each word is represented by the TFIDF score

A simplified variant is to consider the positive feedback
documents only

- R 1 .
qlza.q+ﬁ.m.<z d])
q



The Rocchio Algorithm -3

o The full process will become
1.

2
3.
.

Perform VSM

Select a set of top-ranked documents

Reformulate the query vector

Perform VSM with the new query vector
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KL-Divergence Measure

e Query likelihood measure is a classic way to employ LM to IR

P(qld;)P(d))
P(q) |q|

~ P(q|d) ~ ﬂp(wi|dj)
i=1

« Another basic formulation of LM for IR is the Kullback-
Leibler (KL)-Divergence measure

P
KL@lld) = ) P(wlglog P((Vvvvl'a‘l’j)) <= ) P(wlq)logP(wld))

A% wEevV

P(djlq) = < P(q|d;)P(d;)

— A query is treated as a probabilistic model rather than simply
an observation

— KL-divergence supports us to achieve a better result by

considering both query and document models 11



Relevance Model -1

« The relevance modeling (RM) is a well-practiced approach

— Each query is assumed to be associated with a concept R (or
relevance class/information need)

 Both the query and relevant documents are drawn from the
concept R

— The RM model assumes that words w that co-occur with the
query in the concept will have higher probabilities

P(w,q|R) N ZdjERqP(dj)P(W’qldj)
Yrev PO, qlR) Zw'evzd}ERqP (dJ{)P(W”qldJ{) w g
_ Xajer, P(d))P(wld))P(qld)) '@'
Swev Earer, P () POw'|d))P(ald))
Sa;er, P(d)P(wld)) TLL, P(wild))
Suwev Zaen, P (4) PO |4) T, P (wurla))

Pry (W) =
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Relevance Model -2

- Consequently, for a given pair of query and document, the
relevance degree can be determined by using the new query
language model

— In order to incorporate the general information, the background
model can also be integrated

P(wlq)
P(w|d;)

KL(q||d)) = z P(wlq)log

wev

X — 2 P(wlq)logP(w|dj)

wevVv

— z la - Pyppy(W) + B Pryy(w)+ (1 —a—p) - PBG(W)]logP(W|dj)

wEevV

13



Simple Mixture Model - 1

 An alternative formulation to extract relevance cues is simple
mixture model (SMM)

— It assumes that words in the set of pseudo-relevance feedback
documents are drawn from two-component mixture model:

« One component is the query model

 The other is a background model A . X

e The SMM model Pgy;p (W) is estimated by maximizing the
log-likelihood of the set of top-ranked documents R,

expressed as follows:

L= 1_[ H((l — @) - Psym W) + a - P(w|BG)) ™™

14



Simple Mixture Model - 2

 Estimate the parameters

— E-step
_ (1—a) - Psypy(w)
P(Tsymlw ) = (A=) Payny (W) + @ - P(W|BG)
— M-step
ZdjERq c(w,d;j)P(Tsym|w)
Psym (W) =

ZW’EV ZdeERq C(W’: dj’)P(TSMM w’)

((1 a) - Psuy(w) + a - P(W|BG))C( #)
dJ}EI‘?Lq W“E‘V.
Pspmt W Tspm) P(Tsum) + F (WlBG)P(BG))C(W'dj)

djERg WEV




Tri-Mixture Model -1

e The TriMM model Prp (W) is estimated by maximizing the
log-likelihood of the set of top-ranked documents

— It assumes that words in the set of pseudo-relevance feedback
documents are drawn from three-component mixture model:

« One component is the query model
« Another component is the document-specific model

 The other is a background model

c=[ [ ] [(@=a=pPruww) +a-Povid) + 5 - PwiBG)

W

SENS

)c(w,dj)
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Tri-Mixture Model — 2

 Estimate the parameters
— E-step

1—a—p) - Pryuw)
—a—p) - Pryy(w) + a - P(w|d;) + B - P(W|BG)

( dj‘W' j) _(1_a_,8)'PTMM(W)+a'P(W|dj)+:8'P(W|BG)

— M-step
Yajer, €W, d)P(Tryu|w, d;)
Y rev Za sery €W )P (Traun| W', ;)
c(w, d]-)P (de|w, dj)
Swrer CW, AP (Ty|w', d;)

Pryy(w) =

P(w|d;) =
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A Unified Framework -1

o It is obvious that the major difference among the
representative models mentioned above is how to capitalize
on the set of documents and the original query

A principled framework can be obtained to unify all of these
models (and their extensions) by using a generalized objective
likelihood function:

c(w,e)
L= 1_[ 1_[ ( Z P(w|m)p(m)>

eeE weV \meM
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A Unified Framework -2

cw,e)
‘- rm(z p<w|m>p<m>>

eeE welV \meM

« Relevance modeling (RM): when E only consists of the
user query, M consists of a set of document models
corresponding to the top-ranked (pseudo-relevant) documents,
and we assume the document models are known, then it can

be deduced to the RM model
Sajer, P(d)P(wld)) TLZ, P(wild;)
Ew’evzd}ERq P (d]’) P(W’ld;) l_[liill P (Wild]'-)
_ Xajer, P(d;)P(wid;)P(qld;)
Swiev Zarer, P (df) P(w'|dj)P(qd))
werg P ( Jp)(dj)P(qfldj) : S oiwla) =
= 2 P(W|d-) w'ev

G S, P (@) P(al)

PRM(W) ~
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A Unified Framework -3

c(w,e)
L= Z P(w|m)P(m)
ecE weV \ meM

« Simple mixture modeling (SMM): if we hypothesize that M
consists of two components: one component is a generic
background model and the other is an unknown query-
specific topic model, the weight of each component is
presumably fixed in advance, and the observations are those
top-ranked documents

L= 1_[ H((l — @) - Psym W) + a - P(w|BG)) ™™
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A Unified Framework -4

c(w,e)
L= z P(w|m)P(m)
eEE WEV meM

« Tri-Mixture modeling (TMM): if we hypothesize that M
consists of three components: the first component is a generic
background model, the second model is a document-specific
model, and the last one is an unknown query-specific topic
model, the weight of each component is presumably fixed in
advance, and the observations are those top-ranked
documents

c(w,dj)
c=[TT](@- a8 Prww) +a-Pwid) + B - PowiBe)) ™

d; ERq wEeV
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A Unified Framework -5

c(w,e)

L= z P(w|m)P(m)

ecE weV \ meM

« Others: without loss of generality, some other state-of-the-
art language models also can be deduced from the proposed
general objective function, such as the positional relevance
model, the cluster-based methods, the topic models, and
among others

|djl

I = l lP(Wi» dj)c(wi.dj) — 1_[ HP(Wixdj)
w;€V d;€D ;€D i=1
|djl K
- [ | P(dj)ZP(WilTk)P(Tk|dj)
d;eD i=1 k=1
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Topic-based Relevance Modeling

« TRM assumes that the additional cues of how words are
distributed across a set of latent topics can carry useful global
topic structure for relevance modeling

— The pseudo-relevant documents are assumed to share a set of
pre-defined latent topic variables {Ty, -+, T, -+, Tk }

Yaer, 2k=1P(d;)P(Ti|d;)P(WI|T,)P(q|Ty)
Swrer Zaren, Thr=1 P (d)) P (Twr1d}) PWITH)P(qITyer)

Prry (w) =

— As with PLSA and LDA, the probabilities P(w|T) and P(Ty|d;)

can be estimated using inference algorithms like EM or VB-EM
algorithms on the whole document collection

Yajer, P(d;)P(wld))P(qld))
Swrer Zaen, P (47) P(w'[d))P(qld)

PRM(W) &



Word-based Relevance Modeling

« The most challenging aspect facing RM is how to efficiently
infer the relevance class

— The relevance class of a given query is commonly approximated
by the top-ranked documents returned by an IR system

« The WRM model of each word in the language can be trained
by concatenating those words occurring within a context
window to form a relevant observation sequence for

estimating P(Wldwi) .-
Ywieq P(dw,)P(Wldw,)P(qldw,) g
Pwru (W) = ,
Zwrer Zugeq P (dup) P (w'|dur) P (a]dr)
Lajer P@)PWGIP(ald)

We, We, Wi, Wq, We, Wy, Wd,Wg

Ppy(w) = , ; e W W W W W W
ZWIEVZd;ERqP(d]’)P(Wlld])P(C”d]) iVl gl g W W




Research Issues

 The main issues in pseudo-relevance feedback

— How to select relevant documents from the top-retrieved

documents

— How to select expansion terms
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Gapped Top K & Cluster Centroid

 In order to select a set of pseudo-relevant documents, which

can cover most of the possible aspects of the query, a few
selecting methods have been proposed

— Gapped Top K

« partition the documents into K clusters based solely on the

relevance scores

« select documents with the highest relevance score in each cluster
to form the feedback document set

— Cluster Centroid

« partition top-ranked documents into K clusters

i

-

-

« select the most representative document from each cluster
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¥
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Active Relevance, Density, & Diversity

Active-RDD algorithm extends the MMR algorithm by adding
an extra term, which reflects the document density

— Relevance
P(wlq)
R = KL = z P
el(d) (qlld) (wlg)log Powld)
: Wev
— Density
o Jetfreys divergence
Density(d) = ﬁ Z (KL(d;||d) + KL(d]|d)))

d;€D
— Diversity

Diversity(d) = %li%l(KL(de) + KL(d||d))
€

— Active-RDD

d* = argmaxa - Rel(d) + B - Density(d) + (1 — a — B) - Diversity(d)
de{D-D} 27



Resampling Method

« The essential idea is that a document that appears in multiple
highly-ranked clusters will contribute more to the query
terms than other documents

— The dominate documents in the sampled clusters are used for
feedback with redundancy

— The overlapping cluster method is used to identifty dominant
documents for the query to emphasize good representative
terms in dominant documents

\ ]
— , —  =Es
\5[/ BB ’
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Conclusions

The methods for tackling the fundamental problem can be
classified into global methods and local methods
— Global methods are techniques for expanding or reformulating
query terms independent of the query and initial search results
« Thesaurus or WordNet
- automatic thesaurus generation

« spelling correction

— Local methods adjust a query relative to the documents that
initially appear to match the query

« Relevance feedback
« Pseudo relevance feedback (Blind relevance feedback)

« (Global) indirect relevance feedback

29
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Homework 5 — Description

In this project, you will have

— 150 Queries
e 60% Public Queries & 40% Private Queries
— 30,000 Documents

Our goal is to implement a PRF algorithm for retrieval

— In addition to the PRF model, you can combine any
models/strategies to achieve a good performance

Please submit a report and your source codes to the Moodle
system, otherwise you will get 0 point

— The report will be judged by TA, and the score is either 1 or 2
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Homework 5 — Scoring

Please login our competition page at Kaggle
— https://www.kaggle.com/t/46f5a4ea8bed4a59bd1ba632226adeal

— Your team name is ID Name
e M123456 [T

— The evaluation measure is MAP @ 5000
— The maximum number of daily submissions is 20
— The hard deadline is 12/10 23:59am

 You point is depended on your performance on the private
leaderboard!

YourMAP—-BaselineMAP

e YourScore = — . X 13%
HighestMAP—BaselineMAP
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https://www.kaggle.com/t/46f5a4ea8bed4a59bd1ba632226adea0

Homework 5 — Warning!!

# Team Name Notebook Team Members
Q Baseline: Rocchio

9 FYI: BM25 (k1=0.8 b=0.7)

Q FYI: ULM

Q FYI: VSM

Score @

Please follow our rules
— Don’t cheat yourself, your friends, and me!

— Don’t create multiple accounts!

— Implement the IR system by YOUSELF!
 Enjoy the Information Retrieval Methods
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Questions?

kychen@mail.ntust.edu.tw
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